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Previously derived formalisms for extinction are extended to include crystals of non-spherical shape 
and anisotropy of mosaic spread and particle size. Expressions derived for extinction in an ellipsoidal 
crystal are compared with numerical calculations on a polyhedral specimen. A pseudo-spherical ap- 
proximation for polyhedral crystals is described which is accurate to within 2% of the extinction 
factor y for crystals whose ratio of maximum and minimum dimensions is less than two. Anisotropy of 
mosaic spread is introduced in both the Coppens-Hamilton (C.H.) and Thornley-Nelmes (T.N.) 
descriptions, with both a Lorentzian or a Gaussian distribution function. The formalisms are applied 
to neutron data sets on LiTbF4 (100°K and 300°K), tetracyanoethylene and LiOH. H20, and an X-ray 
data set on e-deutero oxalic acid dihydrate. The distinction between type I and type II crystals is quite 
clear on the basis of a comparison of R values. Only for LiF, which was studied earlier, was extinction 
dominated by particle size. In all other cases the best fit corresponds to mosaic-spread-dominated 
extinction, with a Lorentzian shape of the distribution function. This is especially clear when partial R 
values summed over the severely extinction-affected reflections are compared. The new formalisms are 
further supported by the consistency of the final parameters among various refinements in which the 
most severely extinction-affected reflections are eliminated. Simultaneous refinement on both the 
particle size and the mosaic spread was only successful in the earlier studied case of SrF2. The T.N. 
description of anisotropy leads to lower partial R values, in agreement with physical arguments sup- 
porting the validity of this distribution. 

Introduction 

A general treatment of extinction in X-ray and neutron 
single-crystal diffractometry has been published recent- 
ly (Becket & Coppens, 1973, 1974a - here referred to as 
A). This formalism removes several inadequacies of 
the theory of Zachariasen (1967) and takes the varia- 
tion of the extinction correction with the scattering 
and setting angles explicitly into account. As the 
physical approximations used assume an incoherent 
manyfold rescattering of the beams inside the crystal, 
the model is more adequate in its description of the 
secondary extinction process involving scattering in 
different mosaic blocks than in its description of the 
primary extinction process inside a perfect crystal. 

A general solution was found to the basic equations 
of transfer of intensity in the case of a convex shaped 
crystal. The theory is not adequate when applied to a 
perfect semi-infinite crystal, but agrees reasonably well 
with a first-order dynamical calculation for a perfect 
sphere; it may therefore be considered to give a reason- 
able description of primary extinction in crystallites 
of regular shape. 

Detailed calculations were first performed for spher- 
ical crystals with isotropic extinction, in which case the 
only angular dependence is on the 13ragg angle 0. 
Analysis of the effect of absorption led to the conclu- 

sion that extinction and absorption cannot be treated 
independently if/zR > 0.50. 

Both the dimension of perfect crystallites and the 
mosaic distribution were derived for SrF2, and the 
agreement between parameters obtained with the three 
different wavelengths sets was satisfactory. The particle 
size of the LiF sample was shown to be physically 
reasonable (Becker & Coppens, 1974b - here referred 
to as 13). 

Four general conclusions can be drawn from articles 
A and B. 

(i) the angular dependence of extinction must be 
properly incorporated in the formalism. 

(ii) when extinction is severe, it is dominated by 
mosaic spread (type I), except for very low scattering 
angles. 

(iii) a choice between extinction dominated by type 
I or type II is usually possible on the basis of the R 
values. 

(iv) the mosaic angular distribution seems more 
likely to be Lorentzian than Gaussian. 

In the present article, the formalism is applied to 
non-spherical crystals. Anisotropic extinction, in- 
troduced by Coppens & Hamilton (1970) in the 
Zachariasen approximation, is also introduced. The 
validity and possible extensions of a 'pseudo-spherical 
approximation'  are discussed. A general modification 
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of the least-squares routine L I N U S  is applied to four 
examples (one X-ray and three neutron data sets), 
which have been selected in order to test the limits of 
the theory. The notations are those of articles A and B 
(see Appendix E of article A). 

I. Generalization of the formalism 

The effect of the anisotropy of the crystal shape will be 
discussed for an ellipsoidal crystal. The conclusions 
are compared with numerical calculations on a poly- 
hedral crystal to derive an approximate treatment of 
practical importance. 

Transformation o f  an ellipsoid into a sphere 
An ellipsoid (E) may be defined with respect to its 

principal axes al, a2, aa. If pi are the components of a 
vector along a~, the equation of (E) is: 

= 1  ,1, 
l = l  

P'EP = 1 (1') 

ro=(u~oEuo)-I/z; r = (u'Eu) - i n  (2') 

cos 20' = roruto Eu.  (5') 

Diffracting unit cross section f o r  an ellipsoid 
It was shown in A that the diffracting unit cross sec- 

tion a(et) is given, for a convex shaped crystal, by: 

a ( e l ) = Q e v _  1 fd  v sin 2 (r~ele) (6a) 
' c r y s t a l  ( ~ I ( X )  2 

with 
= l sin 20/2, (6b) 

l being the local thickness of the crystal along the 
diffracted beam direction. 

Using the results of the previous section, it is 
straightforward to show that aE(el) is related to the 
corresponding value asphere(el) for a sphere by: 

The radii r0 and r of (E) along the incident and dif- 
fracted directions uo and u are given by: 

:: lu°'l 
i=i \~-i l  

r (u')' (2) 

(E) can be transformed into a sphere (S) of radius R 
by a product of three orthogonal affinity transforma- 
tions along ai and of respective ratios (R/at). This 
procedure has been used previously by Weber (1963) 
to calculate the absorption correction in an ellipsoid. 
The coordinates pl of a point transform to q~, given 
by: 

R 
- - ,  i=  1,2,3.  (3) q3 =Pl al 

The vectors u0 and u transform to new directions with 
unit vectors uo and u', whose mutual angle is 20'. If 
the transformed path l~t~gths along uo and u' are 
defined as S1 and S~ [Fig. l(b)], one gets" 

• 7: . " ::T1 •• ,, T'z 
; " S , = ~ - -  S ~ -  (4) 

k2 x l  
with , : 

r°" k2 = R k l =  -~- 

The angle O' satisfies the' equation: 

" ' .  '~ 3 . r o r  
z' c o s 2 0 ' =  ~ UolUt a]" (5) 

In a more  general definition of an ellipsoid by a 
tensor E with principal values (1/a~), in a space 
described by a metric G, (1), (2), and (5) become: 

I( 3 

u 

/ -. 

X I ".. 

(a) 

\ • , 13 

\ / 
i /  ,'s 

(b) 

Fig. 1. (a) Incident and diffracted beams in an ellipsoidal crys- 
tal. (b) The affinity transformation of the ellipsoid into a 
sphere. 
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Therefore, the equation A-(29) remains valid for an 
ellipsoid, r becoming the radius along the direction u 
[equation (2) or (2')]. The effective particle size 
defined in A-(35b) is given by: 

~=3(ll tEu) -1/2 sin 20/2. (8) 

For anisotropic primary extinction or anisotropic 
type II secondary extinction where the average perfect 
crystallite is approximated by an ellipsoid, (8) will re- 
place its isotropic analog in the expressions for the 
parameters xp and x~. In comparison with the earlier 
expression by Coppens & Hamilton (1970), u replaces 
the normal N to the incident beam in the diffraction 
plane and the factor sin 20 is added; these revisions 
have been discussed in detail in article A. 

Anisotropy of  the mosaic spread distribution 
Coppens & Hamilton (1970) have introduced anisot- 

ropy in the angular mosaic distribution W (and the 
mosaic spread parameter r/): 

W(el, D) = det (Z)1/223/2 exp (-- 27m2DtZD) 

1 
r/(D)- 2rcl/Zg(D ) =2-~7c-1/2(DtZD) - la  . (9) 

The quantity g(D) is the generalization of the isotropic 
parameter g: D is the unit vector normal to the diffrac- 
tion plane defined by u0 and u. The representation 
surfaces of the mosaic spread are ellipsoids whose 
radii in a given direction are proportional to the mosaic 
spread r/perpendicular to that direction. Generalizing 
a discussion by Nelmes (1969) of the indicatrix ellip- 
soids for thermal motion, Thornley & Nelmes (1974) 
have proposed the following alternative form for the 
mosaic angular distribution: 

W' (el, D) = (DtYD)-  l/22x/2 exp \=Dt-Ty--D/ 

1 
r/'(D)= 2rct/2g,(D) = 2-~zc-x/2(DtYD) t/2 . (10) 

With the distribution given by (10), the representation 
surfaces are ellipsoids with radii inversely proportional 
to the mosaic spread ,7' about the direction under 
study. 

Thornley & Nelmes (1974) discussed the variation 
of extinction for a given reflection of a boracite, on 
rotation of the crystal around the diffraction vector; 
they found (10) to fit these experimental data better 
than (9). 

Analogous expressions can be derived for a Lorent- 
zian distribution; they are: 

2(DtZD) 1/2 
W(e~, D)-- i T r ~ D T - Z D  

(2n) -~ = (2n)- *(D~ ZD)- 1/z r/(D) - g(D) (11) 

= 2 ( o ' e o ) - "  

1+ 
DtYD 

r/ ' (D)- (2n)-x g'(D) - (2x)-~(D'YD)X/2 " (12) 

The effect o f  anisotropy of  the crystal shape on the 
extinction parameter 

Applying the affinity transformation defined by (3), 
one can relate qE(e, 0) for the ellipsoid (E) to the corre- 
sponding function {0sphere for a sphere: [equations 
A-(17) and A-(21)] 

~0e(e,0)= - t  I /)sphere dVsphere 
,3 sphere 

x exp -o ( kxS ,  +k2S'2)Jo(2ioCktk2¢StS'z). (13) 

When the scattering angle 0 is small, one can write: 

k l ~ k 2 ~ k  
and (13) leads to: 

~OE( ~, O) = ~Osphere(k ~, O' ) • (14)  

Since the actual value of the mean path length 
through the crystal is kTsphere in that case, if one defines 
Xs as in A (35a) and B by: 

xs= Z Qo~G,L T (15) 

one gets for the secondary extinction correction: 
y, = y~Sphere(x~, 0 ' ) .  (16) 

(16) shows that at small Bragg angles the only effect of 
the anisotropy of the crystal shape is a replacement of 
0 by 0', provided x~ is defined by (15). 

In the general case, let: 

k = (klk2) '/z = (ror)X/2R- 1 

0 = = (17) 

Q2 represents the anisotropy coefficient of the crystal 
for a given reflection. (13) transforms to: 

9E(#, _ -1 I O)--Vsphere dVsphere exp -k6(QSI  + Q-IS2) 
d sphere 

x Jo(2ikoVSxS2). (18) 
Xs is given by 

k 
Xs=~-Qo~6, LTsphere ~-  ( 0 + 0 - 1 ) .  (19) 

Therefore, when using this expression for Xs, the only 
new anisotropic effect is associated with Q. Using the 
same numerical procedure as described in article A, 
computations of the extinction correction as a function 
of xs, were performed for various values of 0' and Q, 
for a Lorentzian and a Gaussian angular mosaic 
distribution (Becker, 1973). The results, which are 
similar for the two distributions, are shown in Fig. 2 

A C 31A - 2* 
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for a Lorentzian distribution. Since the extinction 
effect is usually found to be small for large angles, one 
may assume that the explicit variation of Ys with Q is 
negligible when Q is smaller than about 1.4, i.e. when 
the anisotropy is smaller than 2. From the calculations 
for large values of 0, it is possible to modify the expres- 
sion for the parameters A(O') and B(O') in the function 
yjx~,O') [expression A-(37) and B-(4)], including an 
explicit variation with Q. 

A real crystal is generally polyhedral and poorly i 
described by an ellipsoid. It would therefore be con- 7 
venient to use (16) if the anisotropy of the crystal is less 
than 2, provided the value of the mean path length, 
•, is computed for each reflection from the actual 
crystal shape. The only effect to consider is that asso- 6 
ciated with the transformation 0---~0'. We shall 
examine this point for a crystal of tetracyanoethylene 5 
(TCNE) which has been used in a neutron diffraction 4 
experiment (Becker, Coppens & Ross, 1973) and shows 
severe and anisotropic extinction. The crystal structure 
is cubic and the sample is a parallelepiped of dimen- 
sions 2.1 x 2.6 x 3.2 mm parallel to a, b, c respectively. 
For various sets of reflections of given Bragg angles, 
the extinction correction was numerically calculated as 
a function of x~. Some of the results are shown in Fig. 3 t 
and are compared with the pseudo-spherical approx- 7 
imation in which 0' is taken to be equal to 0. For the 
low-order reflections [Fig. 3(a)], that are the more 
severely affected by extinction, the spherical approx- 
imation (with actual values of T) is a satisfactory 
average of the curves differing with the setting of the 
crystal, even for large values of x~. When the Bragg 
angle increases, the range of validity of the pseudo- 
spherical approximation becomes smaller, but at the 
same time, because the reflections tend to be weaker, 
y~ becomes closer to one. The agreement therefore 
remains good for the actual range of x~. It follows that 
a pseudo-spherical treatment (with T for a polyhedral 
crystal, but 0 ' = 0 )  is a reasonable approximation 
(precision better than 2 % on y~) for any crystal whose 
anisotropy is smaller than two. 

Modifications of  the refinement program 
A new version L I N E X  74 of the least-squares 

routine LINUS has been written and is available on 
request. Various options for the refinement of extinc- 
tion are included. The calculation of the derivatives 
follows expressions given earlier. 

For example 
3F 2 tgF 2 gg 

3Zk----]- c~g bZkl 

where OF2/Og c a n  be found in Table 6 of article B and 
the expressions for Og/OZu are as given in Table 1 of 
Coppens & Hamilton (1970). One may refine on sec- 
ondary extinction of type I or type II, or use a more 
general formalism. The approximation A-(24): 

y ~  ys(X3 . yp (x . )  

has been replaced by a more realistic one: 

y ~  yp(xp) . y~[yp(xp) . x~] . (20) 

(20) follows from the fact that the actual diffracting 
unit cross section of the mosaic is yp~ instead of 
(Hamilton, 1957). 

p.~ = 1.7 
p=2 .-P= 1.4 

sinO t= 0.5 • = . 

2 i 

iO 15 20 

5 IO 15 20 x 

p= I 

' = . 

2 

Fig. 2. The extinct ion correct ion 1/y as a funct ion  of  x~ for  an 
ellipsoidal crystal at various values of  0 and  Q (Lorentzian 
distribution). 
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Extinction may be refined isotropically or anisotro- 
pically. For anisotropic type I extinction, the two dif- 
ferent definitions of the mosaic anisotropy with either 

8 
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~ 0 0  
~ o4o 
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, , , , i, 

5 10 15 20 

2212  

; Ib I; ~ i" 

Fig. 3. Numerical results for a number of reflections for a box- 
shaped TCNE crystal described in the text (full lines), and 
values obtained in the pseudo-spherical approximation 
(broken line). The actual values of sin 0 and y are as follows: 
004, 040 and 400; sin 0=0.208, y=0-13, 0.14 and 0.12 re- 
spectively. 10,0,0,0rl0t0 and 0,0rl0; sin 0=0"521, y=0"37, 
0"44 and 0"39 respectively. 2,2t12, 12r2r2 and 2r12t2; 
sin 0=0.642, y=0.47, 0"48 and 0"51 respectively. 

a Gaussian or a Lorentzian distribution [(9)-(10) or 
(11)-(12)] may be selected, leading to a tensor Z or Y. 
In the general case, (intermediate between type I and 
type II) it would be necessary to refine on two tensors 
(E and either Z or Y). But, as discussed in A and B, the 
general expression (20) is only relevant for severe ex- 
tinction and very small Bragg angles; when applying 
(20) the particles were constrained to be spherical so 
that seven rather than twelve parameters had to be 
determined. 

II. Experimental  results 

(a) LiTbF4 (neutron data) 
Neutron data, on a large sphere of LiTbF4 were 

provided by Dr F. K. Larsen of Aarhus University 
(Als-Nielsen, Holmes, Larsen & Guggenheim, 1974); 
crystallographic information is summarized in Table 
1. Symmetry-equivalent reflections were averaged and 
extinction was only refined isotropically. In Table 2, 
R values for various extinction options are compared 
with a refinement based on the Zachariasen (1967) 
expressions; the crystals are of type I, with little dif- 
ference between the agreement for the different distri- 
butions. Extinction is moderately severe (the lowest y 
is equal to 0.37). Atomic parameters not reproduced 
here are insensitive to the type of refinement. The 
mosaic spread is very large (26-39' of arc) and the 
crystal may be considered as ideally imperfect; it 
would be of no value to refine on the particle size, (the 
equivalent particle size being ,-, 10 -6 cm, based on type 
II extinction; the actual particle dimensions are much 
larger but small enough for primary extinction to be 
negligible). In this case, extinction is mainly a result of 
the large size of the crystal. 

Table 1. Crystallographic information on LiTbF4 

Space group I41/a 
Low temperature (L.T.) 

(100K) a=5"1805 A c=10.873 /~, 
Room temperature (R.T.) a=5.1919 A c=10.875 A 

Z=4  

Radius of the spherical crystal 3.5 mm 
Wavelength 1.070 
Number of observations 196 (L.T.) 

305 (R.T.) 
Distribution of y values 

Number of reflections 
Range of y L.T. R.T. 
0.37 --+ 0.60 21 13 
0.60 ~ 0.70 26 14 
0.70 ~ 0.80 44 26 
0"80 --* 0"90 52 75 
0"90 -+ 1 53 177 

Since the R value is summed over the complete data 
set, it is not very sensitive to the fit of the strong, extinc- 
tion-affected reflections. One may consider partial R 
values based on reflections in a given range of y, 
which will be strongly dependent on the extinction 
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Table 2. R values for LiTbF4 

Zach- Type I Type I 
aria- Gaus- Lorent- 
sen sian zian 

Low temperature 
R(F z) 0.058 0"056 0.056 
Rw(F z) 0.067 0.069 0"066 
PR (F2) * 0-066 0.074 0.063 
(y<0"60) 

r/ 26 (1") 39 (1 ") 39 (1") 

Room temperature 
R(F ~) 0.052 0.048 0.049 
Rw(F z) 0"073 0"075 0"072 
PR (FZ) * 0.080 0.073 0.070 
(y<0.60) 

r/ 28 (1') 35 (1') 35 (1') 

Type II 

0"085 
0.095 

* Here and in the following tables the letters PR indicate 
partial R values. 

model  when reflections with y larger than about  0.60 
are excluded. Such partial  R values, included in Table 
2 indicate that  the mosaic distr ibution is Lorentzian 
rather Gaussian.  

(b) c~-Deutero oxalic acid dihydrate (,-D OX) (X-ray data) 
This X-ray data set (2 = 1.5405 A) has been analyzed 

by Delaplane & Ibers (1969) and Coppens & Hami l ton  
(1970). The crystallographic informat ion is given in 
Table 3. Extinction is strongly anisotropic, but  only 
severe for few reflections: there are 18 reflections with 
y < 0.80 and 32 with y < 0.90. Coppens & Hami l ton  
(1970) could only refine one type II extinction, and 
found the temperature parameters to be significantly 
affected. 

Table 3. Crystallographic in formation for o~-DOX 

Space group P21/n 
a= 6.150 (1) A b=3.617 (1)/~ 
c = 12.102 (1) A fl= 106°38 (1') 

Z = 2  
Number of observations 546 
Temperature 295 K 
Lowest y 0.39 
Needle-shaped crystal of diameter: 0.22 mm 

length: 0.45 mm 

We have applied various options to the data set, 
including all observations in the refinement and as- 
suming isotropic thermal parameters  for the deuterium 
atoms. The refinements were based on F. Some R 
values are given in Table 4; it is possible to select type 
I extinction with a Lorentzian mosaic spread, but a 
discrimination between the Thorn ley-Nelmes  (T.N.) 
and the Coppens -Hami l ton  (C.H.) descriptions is not 
possible on the basis of  full R values. However, partial  
R values also given in Table 4 show a pronounced 
improvement  with the new formalism, and indicate a 
preference for the Thorn ley-Nelmes  description of  the 
mosaic spread. The extinction parameters for the type 

I Lorentzian refinement are given in Table 5; the 
atomic parameters  do not  differ significantly from 
those previously published. 

Table 4. R values for ~-DOX 

Zacha- Type I Type I 
riasen Gaussian Lorent- 

Type II T.N. & C.H. zian Type II 
R (F) 0.024 0.027 0.022 0.025 
Rw (F) 0.025 0.028 0.022 0.026 
PR (F) y< 0.80 0.026 0.011 (C.H.) 0.018 

0.009 (T.N.) 
PR (F)y<0.90 0.022 0-012 (C.H.) 0.020 

0.010 (T.N.) 

Table 5. Extinction parameters for o~-DOX- 
Lorentzian, type I 

(Thornley-Nelmes) x 108 Principal axes and directions 
Y,Z r/l 6" (0,1,0) 
11 12.2 (0.7) rh 8" (0.60,0,1.0) 
22 3.5 (0.2) r/3 15" (0-85,0,--0"34) 
33 8"7 (1) (a,rh) = 70 ° 
12 0 (0.4) 0h,a) = 20 ° 
23 - 5.5 (1) 
31 0 (0.4) 

(c) Tetracyanoethylene (TCNE) (neutron data) 
The neutron diffraction experiment has been dis- 

cussed previously (Becker, Coppens & Ross, 1973). 
The results were combined with the X-ray data to 
yield the valence-electron distribution. Crystallogra- 
phic informat ion is summarized in Table 6. Extinction 
is severe. A series of  refinements (based on F2), show 
that  the best fit corresponds to a type I crystal with 
Lorentzian distr ibution (Table 7). A simultaneous re- 
f inement on both the particle size and the mosaic 
spread was unsuccessful  as R values increase signifi- 
cantly. The particle size increased to about  40 /zm, 
which is too large for the model to remain valid when 
applied to pr imary  extinction effects. 

Table 6. Crystallographic information for TCNE 

Space group Im3 
a =9.736 (6) A 
Z = 6  

Point-group symmetry 
2 = 1-014 A 

Number of observations 
Number of reflections with 

of the molecules D2h 

503 
y<0.2 12 
y < 0-3 49 
y < 0"5 75 

Smallest y = 0.09 

Box-shaped crystal with dimensions 2-1 x 2.6 x 3.2 mm parallel 
to a, b and c 

Partial R values (Table 7) show again an improve- 
ment with the revised model. There seems to be little 
preference for either of  the two descriptions of  the 
anisotropy of  mosaic spread. 
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R (F 2) 
Rw (F 2) 
PR (F2)y < 0"2 

PR (FZ)y < 0"3 

Table 7. R values for TCNE 

Type I Type I Type I 
Zachariasen Gaussian Lorentzian 

0"055 0.089 0.052 
0"072 0"105 0"068 
0"13 0"085 (C.H.) 

0"085 (T.N.) 
0.10 0.080 (C.H.) 

0"078 (T.N.) 

General Type I 
Lorentzian + Type II 

Type II + primary extinction 
0.094 0.069 
0.118 0.084 

In order to analyze the effect of  correlation between 
thermal parameters  and extinction, some refinements 
were done excluding the reflections with y < 0 . 2  or 
y < 0 . 3 .  Using the Zachariasen formalism, the varia- 
t ion of the temperature parameters  as a function of  
cut-off is small, but  systematic, and can reach two 
standard deviations. On the other hand,  with the new 
expressions, the variat ion is negligible. In Table 8, the 
results of  the refinements for the Zachariasen correc- 
t ion and for type I Lorentzian extinction are given; 
the thermal  parameters  are systematically larger using 
the revised formalism. Therefore, there is a small re- 
duction of  the difference with X-ray thermal  param- 
eters (Table 8). It has been pointed out that the de- 
format ion density is high compared with other studies 
and theoretical calculations (Becker, Coppens & 
Ross, 1973; Coppens, 1974); the systematic bias in the 
temperature parameters  revealed here partly corrects 
this discrepancy, as it leads to a reduction of  almost  
0.1 e A -3 in the peak heights (Becker & Coppens, un- 
publ ished results). 

Table 8. Results for the thermal parameters for TCNE 

Zachariasen Lorentzian 
Type I Type I X-ray 

N Uu 0.0451 (4) 0.0461 (3) 0.0507 (7) 
U22 0.0453 (4) 0.0462 (3) 0.0479 (6) 
0"33 0.0300 (4) 0.0309 (3) 0.0403 (6) 
U13 -0.0139 (2) -0-0138 (2) -0.0094 (4) 

C(1) U~ 0.0311 (4) 0"0317 (4) 0"0346 (6) 
0"22 0.0306 (4) 0.0315 (4) 0.0319 (5) 
U33 0.0239 (4) 0.0249 (4) 0.0299 (6) 
Ut3 - 0.0039 (2) - 0.0039 (2) - 0.0009 (4) 

C(2) Uu 0.0277 (5) 0.0288 (4) 0.0355 (8) 
U22 0.0254 (5) 0.0261 (4) 0.0253 (6) 
U3a 0"0195 (5) 0"0207 (4) 0"0257 (7) 

T h e  T.N. extinction parameters  are given in Table 9. 
The s tandard deviations for the extinction parameters  
are reduced by a factor of  two compared with the cor- 
rection of  Zachariasen.  

(d) L iOH.  H20 (neutron data) 
The data set and the results of  earlier refinements 

have been provided by Dr W. R. Busing. Crystallo- 
graphic informat ion  is summarized in Table 10. Ex- 
tinction is extremely severe. We have made various 
refinements, based on F 2. With  the Zachariasen correc- 
tion, it is impossible to refine on the scale factor, be- 
cause of  its correlation with extinction. A refinement 

Table 9. Extinction parameter 
for TCNE-Lorentzian, type I 

Y,Z T.N. ( x 10 8) 
11 0.0096 (6) 
22 0.0202 (20) 
33 0.0140 (14) 
12 - 0.0040 (10) 
13 0.0010 (80) 
23 0.0000 (160) 

Principal axes and directions 
r/l 0-37" (0,0,1) 
I/2 0"3" (0.27,0-96,0) 
r/3 0.46" (0.96,--0.27,0) 

(a,~2) = 60 ° (a,~2) = 75 ° 
(rb,a) = 30 ° 013,a) = 15 ° 

assuming extinction to be of  type II does not  converge. 
The best fit corresponds to a type I Lorentzian extinc- 
tion. R values are very sensitive to the type of  correc- 
tion. Because of  the large size of the perfect blocks, it 
is not possible to refine on the particle size; the 
theory incorrectly describes pr imary  extinction in this 
case. 

Table 10. Crystallographic information for LiOH.  H20  

Space group C2/m 
a =7-4153 (1) A b=8-3054 (1) 
c =3"1950 (1) A fl=l10°6 ' (1') 
Z = 4  
Wavelength 
Anisotropy of the polyhedral crystal < 2 
Number of observations 
Number of reflections with y < 0. l 

y<0.2 
y<0.5 

Smallest y = 0.04 

1"2459/~ 

609 
60 

180 
450 

The results of  the best refinements are given in 
Tables 11 and 12 together with the results f rom an X- 
ray experiment of  average quality described by Alcock 
(1971). Partial R values (Table 11) again confirm a pre- 
ference for T.N. type mosaic spread. 

It is clear f rom Table 12 that  Zachar iasen refinement 
leads to thermal  parameters  which are quite different 
f rom the Lorentzian type I new correction, the present 
theory being in reasonable agreement with the X-ray 
results. 

In order to test the correlation between temperature 
parameters  and extinction, we have made some refine- 
ments where reflections with y < 0 . 1  or y < 0 . 2  were 
excluded. With  the Zachariasen correction, some 
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Table 11. R values for LiOH.  H20 

R (F 2) 
R~, (F 2) 
PR (F 2) y < 0" 1 
PR (F 2) y < 0"2 

The approximate principal values and directions of 
Zachariasen Lorentzian the mosaic spread are given in Table 13. 

Type I Type I 
C.H. T.N. Table 13. Mosaic spread, principal axes and directions 

0.078 0.080 0.076 from Lorentzian type I refinement 
0'087 0"088 0.084 
0.068 0"062 0"058 T.N. 
0"072 0"065 0"063 r/1 0.32" (0,1,0) 

r/2 0.25" (1,0,0) 
r/3 0"18" (0-36,0,1"1) 

Table 12. Parameters from refinements (a,~h) 0 
o f L i O H .  H20  (a,n3) 90 ° 

Zachariasen Lorentzian 
Type I Type I X-ray 

(a) 
Li y 0.3479 (5) 0.3475 (5) 0.3474 (10) 

UH 0.0137 (18) 0.0223 (17) 0.0202 (25) 
(./22 0.0091 (19) 0.0194 (18) 0.0160 (30) 
(-/33 0"0179 (21) 0"0246 (20) 0"0248 (40) 
Ut3 0"0031 (17) 0"0050 (17) 0"0059 (30) 

0"2858 (2) 0"2859 (2) 0"2857 (5) 
0"3957 (5) 0-3950 (5) 0"3952 (12) 
0"0076 (7) 0"0157 (6) 0"0169 (12) 
0"0101 (8) 0"0199 (7) 0"0182 (15) 
0"0177 (10) 0"0257 (8) 0"0219 (18) 
0"0000 (7) 0"0034 (6) 0"0042 (15) 

0"2069 (2) 0"2066 (1) 0"2066 (4) 
0"0148 (8) 0"0234 (7) 0"0263 (17) 
0-0082 (7) 0"0179 (7) 0'0206 (20) 
0"0143 (9) 0"0226 (7) 0"0181 (20) 

(b) 
O(1) x 

z 
UH 
U22 
U33 
U~3 

(c) 
0(2) y 

U~, 
U22 
U33 

(d) 
H(1) 

H(2) 

z , y , x  
11 
22 
33 
12 
13 
23 

U13 0.0019 (7) 0.0054 (7) 0.0073 (15) 

x 0.2654 (4) 0.2653 (5) 
z 0"6730 (10) 0"6736 (10) 
Utx 0.0292 (15) 0.0398 (14) 
0"22 0"0356 (17) 0.0452 (17) 
U33 0.0296 (18) 0.0374 (17) 
U13 0.0112 (14) 0.0163 (13) 
x 0.1114 (3) 0.11.17 (3) 
y 0.1328 (3) 0.1327 (2) 
z 0.1388 (7) 0.1383 (5) 
Ult 0.0229 (10) 0.0310 (9) 
Uz2 0.0215 (10) 0.0313 (10) 
U33 0.0288 (11) 0.0379 (10) 
Ut2 0.0019 (7) 0.0017 (7) 
U,3 0.0065 (10) 0.0105 (9) 
/../23 - 0.0009 (8) - 0.0008 (8) 
10 T s (C.H.) (T.N.) 

1200 (80) 163 (30) 0.0053 (10) 
660 (87) 107 (20) 0.0077 (15) 

1710 (70) 220 (40) 0.0033 (7) 
63 (47) 12 (7) -0.0009 (3) 

-960 (62) -107 (22) 0"0000 (2) 
- 106 (44) - 15 (7) 0"0000 (2) 

(a) x=0, z=½, U12= U23=0; (b)y=0, U12 
z = 0, U12 = U23 = 0; (d) y = 0, U12 = U23 = 0. 

= U23 =0; (c) x=O, 

temperature parameters varied by five standard devia- 
tions, showing an appreciable bias, while the present 
t reatment is supported by such variations being limited 
to less than one standard deviation. 

Again, the new theory leads to higher values of the 
thermal  parameters.  

I I I .  D i s c u s s i o n  

For large data sets R values obtained with the revised 
formalisms are not very different from those obtained 
with the Zachariasen correction. However, partial  R 
values limited to intense extinction-affected reflec- 
tions are much more sensitive to the nature of the ex- 
tinction formalism, and indi~:ate a preference for the 
revised model. The standard deviations of the extinc- 
tion parameters are also reduced significantly. 

The distinction between type I and type II extinction 
is quite pronounced because of  the sin 20 dependence 
of xs for type II crystals. Only in the case of LiF was 
extinction dominated by particle size. In all other cases 
the best fit corresponds to mosaic-spread-dominated 
extinction, with a Lorentzian shape of  the distribution 
function. It implies that some crystallites are quite 
misoriented, as the Lorentzian distr ibution has rather 
broad tails in comparison with a Gaussian function. 

The consistency of the refined parameters from data 
sets at different wavelengths (for SrF2) and from re- 
finements eliminating reflections with y < 0-1, y < 0.2 
and y < 0.3 (TCNE and LiOH) support application of  
the new formalisms. Only in the case of  SrF2 was 
refinement on both the particle size and the mosaic 
spread successful. In other cases, the particle size is 
large and has little influence on the secondary extinc- 
tion, while pr imary  extinction is improperly described 
in these cases. Fortunately, this affects only few reflec- 
tions. 

The pseudo-spherical approximation,  applied to 
polyhedral  crystals, has been shown to be accurate 
within about  2 % if  the ratio of  the extreme dimensions 
of  the crystal does not exceed a factor of  two. For more 
severe anisotropy and very severe strong extinction it 
may be necessary to complement  the pseudo-spherical  
refinement with an addit ional  numerical  evaluation of  
y using equation B-(2). 

The two descriptions of anisotropic mosaicity 
The Thornley & Nelmes description of mosaic anisot- 

ropy takes into account the component  of  the mis- 
orientation for all the mosaic blocks which corre- 
sponds to a rotation around the vector D normal to the 
diffraction plane. The earlier description (C.H.) takes 
into account only the distr ibution in the plane per- 
pendicular  to D and thereby neglects any effect of  a 
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misorientation in other directions. Especially when the 
beam is finely collimated such a misorientation will 
affect the domain distribution N(el) and its neglect is 
therefore not justifiable. 

It is satisfying that, in cases where a distinction can be 
made, partial R values favor the T.N. model, in agree- 
ment also with experimental measurements of the 
pronounced variation of the diffracted intensity of a 
boracite on rotation around the diffraction vector 
(Thornley & Nelmes, 1974). 

Finally, it may be pointed out that though the 
physical formulation of extinction requires further 
study, the present theory extends the domain of 
applicability of an extinction refinement. This is of 
special importance in neutron diffraction studies, 
where extinction is often severe. In further develop- 
ment of formalisms it may be necessary to modify or 
abandon the mosaic model, and to allow for the partial 
coherence of the multiple diffraction process. 
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It is shown that, in order to treat the problem of the propagation of an X-ray wave in a distorted crystal, 
the plane-wave assumption, which is one of the fundamental ingredients in the usual dynamical theory, 
should be removed. Both the incident and the crystal waves should be built as wave packets, i.e. contin- 
uous distributions of K vectors, characterized by their extensions in both reciprocal and direct spaces. 
The characteristic structure of the crystal wave packet for a perfect crystal, and the changes undergone 
by this structure as a result of the crystal distortions, are examined; the criterion for the validity of 
geometrical optics is thus reformulated. 

I. Introduction 

The dynamical theory of X-ray diffraction is generally 
considered to be concerned with the problem of pro- 
pagation of an electromagnetic wave of given fre- 
quency falling in the X-ray region in a medium made 
up of a more-or-less perfect three-dimensional array 
of atoms. As a matter of fact, the papers which ori- 
ginated this kind of studies (Ewald, 1916; Darwin, 
1914; von Laue, 1931) were only concerned with a very 
special kind of waves (i.e. plane waves) incident on a 
perfect crystal (i.e. a medium without any disturbance 
in the three-dimensional ordering of atoms). The wave 
inside the crystal then appears as a superposition of 
four plane waves, the characteristics of which can be 

fully determined from the boundary conditions at the 
entrance surface. It was soon realized that in order to 
deal with real cases one has to extend this ideal treat- 
ment (which we shall call the Ewald-Laue theory) to 
that of a non-plane wave travelling in a non-perfect 
crystal. This has usually been performed by mere 
adaptation of the ideal plane-wave solution: the 
characteristic parameters of the plane-wave solution 
(e.g. the departure from exact Bragg angle) were con- 
sidered to be space varying and one calculated the 
change of this 'variable constant'  necessary to match 
the real propagation conditions. Kato's (1963, 1964a, 
b), Penning's (1961) and Penning & Polder's (1966) 
treatments can be considered as typical examples of 
such a way of dealing with the real problem. For ten 


